Agua
El agua es un compuesto que se forma a partir de la unión, mediante enlaces covalentes, de dos átomos de hidrógeno y uno de oxígeno; su fórmula molecular es H2O y se trata de una molécula muy estable.
En la estructura de la molécula los dos átomos de hidrógeno y el de oxígeno están dispuestos en un ángulo de 105°, lo cual le confiere características relevantes.
Es una molécula dipolar – en la que el átomo de oxígeno central comparte un par de electrones con cada uno de los dos átomos de hidrógeno – con un exceso de carga negativa junto al oxígeno, compensada por otra positiva repartida entre los dos átomos de hidrógeno.
Propiedades Físicas del Agua
El agua
químicamente pura es un liquido inodoro e insípido; incoloro y transparente en
capas de poco espesor, toma color azul cuando se mira a través de espesores de
seis y ocho metros, porque absorbe las radiaciones rojas. Sus constantes
físicas sirvieron para marcar los puntos de referencia de la escala
termométrica Centígrada.
A la presión
atmosférica de 760 milímetros el agua hierve a temperatura de 100°C y el punto
de ebullición se eleva a 374°, que es la temperatura critica a que corresponde
la presión de 217,5 atmósferas; en todo caso el calor de vaporización del agua
asciende a 539 calorías/gramo a 100°.
·
1) Estado físico: sólida, liquida y gaseosa
·
2) Color: incolora
·
3) Sabor: insípida
·
5) Densidad: 1 g./c.c. a 4°C
·
6) Punto de congelación: 0°C
·
7) Punto de ebullición: 100°C
·
8) Presión critica: 217,5 atm.
·
9) Temperatura critica: 374°C
Mientras que el
hielo funde en cuanto se calienta por encima de su punto de fusión, el agua
liquida se mantiene sin solidificarse algunos grados por debajo de la
temperatura de cristalización (agua subenfriada) y puede conservarse liquida a
–20° en tubos capilares o en condiciones extraordinarias de reposo. La
solidificación del agua va acompañada de desprendimiento de 79,4 calorías por
cada gramo de agua que se solidifica. Cristaliza en el sistema hexagonal y
adopta formas diferentes, según las condiciones de cristalización.
A consecuencia de
su elevado calor especifico y de la gran cantidad de calor que pone en juego
cuando cambia su estado, el agua obra de excelente regulador de temperatura en
la superficie de la Tierra y más en las regiones marinas.
El agua se comporta
anormalmente; su presión de vapor crece con rapidez a medida que la temperatura
se eleva y su volumen ofrece la particularidad de ser mínimo a la de 4°. A
dicha temperatura la densidad del agua es máxima, y se ha tomado por unidad. A
partir de 4° no sólo se dilata cuando la temperatura se eleva,. sino también
cuando se enfría hasta 0°: a esta temperatura su densidad es 0,99980 y al
congelarse desciende bruscamente hacia 0,9168, que es la densidad del hielo a
0°, lo que significa que en la cristalización su volumen aumenta en un 9 por
100.
Las propiedades
físicas del agua se atribuyen principalmente a los enlaces por puente de
hidrógeno, los cuales se presentan en mayor número en el agua sólida, en la red
cristalina cada átomo de la molécula de agua está rodeado tetraédricamente por
cuatro átomos de hidrógeno de otras tantas moléculas de agua y así
sucesivamente es como se conforma su estructura.
Cuando el agua
sólida (hielo) se funde la estructura tetraédrica se destruye y la densidad del
agua líquida es mayor que la del agua sólida debido a que sus moléculas quedan
más cerca entre sí, pero sigue habiendo enlaces por puente de hidrógeno entre
las moléculas del agua líquida.
Cuando se calienta
agua sólida, que se encuentra por debajo de la temperatura de fusión, a medida
que se incrementa la temperatura por encima de la temperatura de fusión se
debilita el enlace por puente de hidrógeno y la densidad aumenta más hasta
llegar a un valor máximo a la temperatura de 3.98ºC y una presión de una
atmósfera. A temperaturas mayores de 3.98 ºC la densidad del agua líquida
disminuye con el aumento de la temperatura de la misma manera que ocurre con
los otros líquidos.
1)Reacciona con los óxidos ácidos
2)Reacciona con los óxidos básicos
3)Reacciona con los metales
4)Reacciona con los no metales
5)Se une en las sales formando hidratos
1)Los anhídridos u óxidos ácidos reaccionan con el agua y forman ácidos oxácidos.
2) Los óxidos de los metales u óxidos básicos reaccionan con el agua para formar hidróxidos. Muchos óxidos no se disuelven en el agua, pero los óxidos de los metales activos se combinan con gran facilidad.
3) Algunos metales descomponen el agua en frío y otros lo hacían a temperatura elevada.
4)El agua reacciona con los no metales, sobre todo con los halógenos, por ej: Haciendo pasar carbón al rojo sobre el agua se descompone y se forma una mezcla de monóxido de carbono e hidrógeno (gas de agua).
5)El agua forma combinaciones complejas con algunas sales, denominándose hidratos.
En algunos casos los hidratos pierden agua de cristalización cambiando de aspecto, y se dice que son eflorescentes, como le sucede al sulfato cúprico, que cuando está hidratado es de color azul, pero por pérdida de agua se transforma en sulfato cúprico anhidro de color blanco.
2)Reacciona con los óxidos básicos
3)Reacciona con los metales
4)Reacciona con los no metales
5)Se une en las sales formando hidratos
1)Los anhídridos u óxidos ácidos reaccionan con el agua y forman ácidos oxácidos.
2) Los óxidos de los metales u óxidos básicos reaccionan con el agua para formar hidróxidos. Muchos óxidos no se disuelven en el agua, pero los óxidos de los metales activos se combinan con gran facilidad.
3) Algunos metales descomponen el agua en frío y otros lo hacían a temperatura elevada.
4)El agua reacciona con los no metales, sobre todo con los halógenos, por ej: Haciendo pasar carbón al rojo sobre el agua se descompone y se forma una mezcla de monóxido de carbono e hidrógeno (gas de agua).
5)El agua forma combinaciones complejas con algunas sales, denominándose hidratos.
En algunos casos los hidratos pierden agua de cristalización cambiando de aspecto, y se dice que son eflorescentes, como le sucede al sulfato cúprico, que cuando está hidratado es de color azul, pero por pérdida de agua se transforma en sulfato cúprico anhidro de color blanco.
Por otra parte, hay sustancias que tienden a tomar el vapor de agua de
la atmósfera y se llaman hidrófilas y también higroscópicas; la sal se dice
entonces que delicuesce, tal es el caso del cloruro cálcico.
El agua como compuesto quimico:
Habitualmente se piensa que el agua natural que conocemos es un compuesto químico de fórmula H2O, pero no es así, debido a su gran capacidad disolvente toda el agua que se encuentra en la naturaleza contiene diferentes cantidades de diversas sustancias en solución y hasta en suspensión, lo que corresponde a una mezcla.
Habitualmente se piensa que el agua natural que conocemos es un compuesto químico de fórmula H2O, pero no es así, debido a su gran capacidad disolvente toda el agua que se encuentra en la naturaleza contiene diferentes cantidades de diversas sustancias en solución y hasta en suspensión, lo que corresponde a una mezcla.
El agua químicamente pura es un compuesto de fórmula molecular H2O. Como
el átomo de oxígeno tiene sólo 2 electrones no apareados, para explicar la
formación de la molécula H2O se considera que de la hibridación de los
orbitales atómicos 2s y 2p resulta la formación de 2 orbitales híbridos sp3. El
traslape de cada uno de los 2 orbitales atómicos híbridos con el orbital 1s1 de
un átomo de hidrógeno se forman dos enlaces covalentes que generan la formación
de la molécula H2O, y se orientan los 2 orbitales sp3 hacia los vértices de un
tetraedro triangular regular y los otros vértices son ocupados por los pares de
electrones no compartidos del oxígeno. Esto cumple con el principio de
exclusión de Pauli y con la tendencia de los electrones no apareados a
separarse lo más posible.
Experimentalmente se encontró que el ángulo que forman los 2 enlaces covalentes oxígeno-hidrógeno es de 105º y la longitud de enlace oxígeno-hidrógeno es de 0.96 angstroms y se requiere de 118 kcal/mol para romper uno de éstos enlaces covalentes de la molécula H2O. Además, el que el ángulo experimental de enlace sea menor que el esperado teóricamente (109º) se explica como resultado del efecto de los 2 pares de electrones no compartidos del oxígeno que son muy voluminosos y comprimen el ángulo de enlace hasta los 105º.
Las fuerzas de repulsión se deben a que los electrones tienden a mantenerse separados al máximo (porque tienen la misma carga) y cuando no están apareados también se repelen (principio de exclusión de Pauli). Además núcleos atómicos de igual carga se repelen mutuamente.
Las fuerzas de atracción se deben a que los electrones y los núcleos se atraen mutuamente porque tienen carga opuesta, el espín opuesto permite que 2 electrones ocupen la misma región pero manteniéndose alejados lo más posible del resto de los electrones.
La estructura de una molécula es el resultado neto de la interacción de las fuerzas de atracción y de repulsión (fuerzas intermoleculares), las que se relacionan con las cargas eléctricas y con el espín de los electrones.
De acuerdo con la definición de ácido y álcali de Brönsted-Lowry, los 2 pares de electrones no compartidos del oxígeno en la molécula H2O le proporciona características alcalinas. Los 2 enlaces covalentes de la molécula H2O son polares porque el átomo de oxígeno es más electronegativo que el de hidrógeno, por lo que esta molécula tiene un momento dipolar electrostático igual a 6.13x10-30 (coulombs)(angstrom), lo que también indica que la molécula H2O no es lineal, H-O-H.
El agua es un compuesto tan versátil principalmente debido a que el tamaño de su molécula es muy pequeño, a que su molécula es buena donadora de pares de electrones, a que forma puentes de hidrógeno entre sí y con otros compuestos que tengan enlaces como: N-H, O-H y F-H, a que tiene una constante dieléctrica muy grande y a su capacidad para reaccionar con compuestos que forman otros compuestos solubles.
El agua es, quizá el compuesto químico más importante en las actividades del hombre y también más versátil, ya que como reactivo químico funciona como ácido, álcali, ligando, agente oxidante y agente reductor.
Experimentalmente se encontró que el ángulo que forman los 2 enlaces covalentes oxígeno-hidrógeno es de 105º y la longitud de enlace oxígeno-hidrógeno es de 0.96 angstroms y se requiere de 118 kcal/mol para romper uno de éstos enlaces covalentes de la molécula H2O. Además, el que el ángulo experimental de enlace sea menor que el esperado teóricamente (109º) se explica como resultado del efecto de los 2 pares de electrones no compartidos del oxígeno que son muy voluminosos y comprimen el ángulo de enlace hasta los 105º.
Las fuerzas de repulsión se deben a que los electrones tienden a mantenerse separados al máximo (porque tienen la misma carga) y cuando no están apareados también se repelen (principio de exclusión de Pauli). Además núcleos atómicos de igual carga se repelen mutuamente.
Las fuerzas de atracción se deben a que los electrones y los núcleos se atraen mutuamente porque tienen carga opuesta, el espín opuesto permite que 2 electrones ocupen la misma región pero manteniéndose alejados lo más posible del resto de los electrones.
La estructura de una molécula es el resultado neto de la interacción de las fuerzas de atracción y de repulsión (fuerzas intermoleculares), las que se relacionan con las cargas eléctricas y con el espín de los electrones.
De acuerdo con la definición de ácido y álcali de Brönsted-Lowry, los 2 pares de electrones no compartidos del oxígeno en la molécula H2O le proporciona características alcalinas. Los 2 enlaces covalentes de la molécula H2O son polares porque el átomo de oxígeno es más electronegativo que el de hidrógeno, por lo que esta molécula tiene un momento dipolar electrostático igual a 6.13x10-30 (coulombs)(angstrom), lo que también indica que la molécula H2O no es lineal, H-O-H.
El agua es un compuesto tan versátil principalmente debido a que el tamaño de su molécula es muy pequeño, a que su molécula es buena donadora de pares de electrones, a que forma puentes de hidrógeno entre sí y con otros compuestos que tengan enlaces como: N-H, O-H y F-H, a que tiene una constante dieléctrica muy grande y a su capacidad para reaccionar con compuestos que forman otros compuestos solubles.
El agua es, quizá el compuesto químico más importante en las actividades del hombre y también más versátil, ya que como reactivo químico funciona como ácido, álcali, ligando, agente oxidante y agente reductor.
Difusión
Proceso mediante el cual ocurre un flujo de partículas (átomos, iones o moléculas) de una región de mayor concentración a una de menor concentración, provocado por un gradiente de concentración. Si se coloca un terrón de azúcar en el fondo de un vaso de agua, el azúcar se disolverá y se difundirá lentamente a través del agua, pero si no se remueve el líquido pueden pasar semanas antes de que la solución se aproxime a la homogeneidad.
Proceso mediante el cual ocurre un flujo de partículas (átomos, iones o moléculas) de una región de mayor concentración a una de menor concentración, provocado por un gradiente de concentración. Si se coloca un terrón de azúcar en el fondo de un vaso de agua, el azúcar se disolverá y se difundirá lentamente a través del agua, pero si no se remueve el líquido pueden pasar semanas antes de que la solución se aproxime a la homogeneidad.
Ósmosis
Fenómeno que consiste en el paso del solvente de una solución de menor concentración a otra de mayor concentración que las separe una membrana semipermeable, a temperatura constante. En la ósmosis clásica, se introduce en un recipiente con agua un tubo vertical con el fondo cerrado con una membrana semipermeable y que contiene una disolución de azúcar. A medida que el agua pasa a través de la membrana hacia el tubo, el nivel de la disolución de azúcar sube visiblemente. Una membrana semipermeable idónea para este experimento es la que existe en el interior de los huevos, entre la clara y la cáscara. En este experimento, el agua pasa en ambos sentidos a través de la membrana. Pasa más cantidad de agua hacia donde se encuentra la disolución concentrada de azúcar, pues la concentración de agua es mayor en el recipiente con agua pura; o lo que es lo mismo, hay en ésta menos sustancias diluidas que en la disolución de azúcar. El nivel del líquido en el tubo de la disolución de azúcar se elevará hasta que la presión hidrostática iguale el flujo de moléculas de disolvente a través de la membrana en ambos sentidos. Esta presión hidrostática recibe el nombre de presión osmótica. Numerosos principios de la física y la química intervienen en el fenómeno de la ósmosis enanimales y plantas.
Capilaridad
Es el ascenso o descenso de un líquido en un tubo de pequeño diámetro (tubo capilar), o en un medio poroso (por ej. un suelo), debido a la acción de la tensión superficial del líquido sobre la superficie del sólido. Este fenómeno es una excepción a la ley hidrostática de los vasos comunicantes, según la cual una masa de líquido tiene el mismo nivel en todos los puntos; el efecto se produce de forma más marcada en tubos capilares, es decir, tubos de diámetro muy pequeño. La capilaridad, o acción capilar, depende de las fuerzas creadas por la tensión superficial y por el mojado de las paredes del tubo. Si las fuerzas de adhesión del líquido al sólido (mojado) superan a las fuerzas de cohesión dentro del líquido (tensión superficial), la superficie del líquido será cóncava y el líquido subirá por el tubo, es decir, ascenderá por encima del nivel hidrostático. Este efecto ocurre por ejemplo con agua en tubos de vidrio limpios. Si las fuerzas de cohesión superan a las fuerzas de adhesión, la superficie del líquido será convexa y el líquido caerá por debajo del nivel hidrostático. Así sucede por ejemplo con agua en tubos de vidrio grasientos (donde la adhesión es pequeña) o con mercurio en tubos de vidrio limpios (donde la cohesión es grande). La absorción de agua por una esponja y la ascensión de la cera fundida por el pabilo de una vela son ejemplos familiares de ascensión capilar. El agua sube por la tierra debido en parte a la capilaridad, y algunos instrumentos de escritura como la pluma estilográfica (fuente) o el rotulador (plumón) se basan en este principio.
Es el ascenso o descenso de un líquido en un tubo de pequeño diámetro (tubo capilar), o en un medio poroso (por ej. un suelo), debido a la acción de la tensión superficial del líquido sobre la superficie del sólido. Este fenómeno es una excepción a la ley hidrostática de los vasos comunicantes, según la cual una masa de líquido tiene el mismo nivel en todos los puntos; el efecto se produce de forma más marcada en tubos capilares, es decir, tubos de diámetro muy pequeño. La capilaridad, o acción capilar, depende de las fuerzas creadas por la tensión superficial y por el mojado de las paredes del tubo. Si las fuerzas de adhesión del líquido al sólido (mojado) superan a las fuerzas de cohesión dentro del líquido (tensión superficial), la superficie del líquido será cóncava y el líquido subirá por el tubo, es decir, ascenderá por encima del nivel hidrostático. Este efecto ocurre por ejemplo con agua en tubos de vidrio limpios. Si las fuerzas de cohesión superan a las fuerzas de adhesión, la superficie del líquido será convexa y el líquido caerá por debajo del nivel hidrostático. Así sucede por ejemplo con agua en tubos de vidrio grasientos (donde la adhesión es pequeña) o con mercurio en tubos de vidrio limpios (donde la cohesión es grande). La absorción de agua por una esponja y la ascensión de la cera fundida por el pabilo de una vela son ejemplos familiares de ascensión capilar. El agua sube por la tierra debido en parte a la capilaridad, y algunos instrumentos de escritura como la pluma estilográfica (fuente) o el rotulador (plumón) se basan en este principio.
4. Animales De
Agua Dulce
La composición de las comunidades de agua dulce depende más del clima que las de agua salada. Los océanos cubren vastas extensiones y se entremezclan entre ellos, esto no ocurre con las masas de agua dulce. Por esta razón, la propagación de las especies de agua dulce está mucho más limitada que la de las especies de agua salada. La variación en la composición química es mayor en las aguas del interior que en las de los océanos, ya que los minerales disueltos en el agua dulce no pueden dispersarse en áreas tan extensas como en aquéllos. Sin embargo, considerando estas limitaciones, existen dos grandes divisiones de las aguas dulces del interior: aguas corrientes y aguas estancadas. En general, las primeras están en relación con el mar, y una parte importante de la población animal proviene del gran número de especies oceánicas que penetran en los ríos. La rapidez de las corrientes en las aguas libres requiere que los animales sean grandes nadadores (como el salmón), habitantes de las profundidades (como el cangrejo de río), o formas que pueden fijarse a las rocas, plantas acuáticas, o detritos (como la sanguijuela). Las aguas estancadas experimentan pequeñas fluctuaciones, de modo que las formas sedentarias y de natación lenta son abundantes en estas zonas. Las cuencas de agua estancada reúnen una mayor cantidad de detritos orgánicos que las que fluyen, lo que hace posible la existencia de poblaciones vegetales tan grandes como para facilitar un aporte abundante de alimentos a la población animal.
La composición de las comunidades de agua dulce depende más del clima que las de agua salada. Los océanos cubren vastas extensiones y se entremezclan entre ellos, esto no ocurre con las masas de agua dulce. Por esta razón, la propagación de las especies de agua dulce está mucho más limitada que la de las especies de agua salada. La variación en la composición química es mayor en las aguas del interior que en las de los océanos, ya que los minerales disueltos en el agua dulce no pueden dispersarse en áreas tan extensas como en aquéllos. Sin embargo, considerando estas limitaciones, existen dos grandes divisiones de las aguas dulces del interior: aguas corrientes y aguas estancadas. En general, las primeras están en relación con el mar, y una parte importante de la población animal proviene del gran número de especies oceánicas que penetran en los ríos. La rapidez de las corrientes en las aguas libres requiere que los animales sean grandes nadadores (como el salmón), habitantes de las profundidades (como el cangrejo de río), o formas que pueden fijarse a las rocas, plantas acuáticas, o detritos (como la sanguijuela). Las aguas estancadas experimentan pequeñas fluctuaciones, de modo que las formas sedentarias y de natación lenta son abundantes en estas zonas. Las cuencas de agua estancada reúnen una mayor cantidad de detritos orgánicos que las que fluyen, lo que hace posible la existencia de poblaciones vegetales tan grandes como para facilitar un aporte abundante de alimentos a la población animal.
5. Animales De Agua Salada
Se ha descrito un gran número de especies de ballenas y peces depredadores en todos los mares. Sin embargo, la mayoría de los animales acuáticos están limitados a unas áreas climáticas relativamente definidas. En general, los animales no abandonan su zona climática y, cuando una zona está dividida por masas terrestres, evitan el paso a otras masas de agua dentro de la misma zona.
Las condiciones medio ambientales en las aguas profundas son muy
diferentes según el nivel de profundidad. La temperatura del agua desciende y
la presión aumenta a medida que se avanza hacia el fondo. Las posibilidades de
alimentarse, que dependen del número y tipo de plantas y animales que existan,
varían también mucho con la profundidad. Un animal acuático que sólo puede
sobrevivir en profundidades de 6.000 a 7.000 m, no puede cruzar una cordillera
del suelo del océano si su cresta se encuentra sólo a 3.000 m por debajo de la
superficie.
Suponiendo que exista una relativa uniformidad de temperatura, presión y
condiciones alimentarias, los hábitats de agua salada pueden ser divididos en
tres zonas: litoral, pelágica y abisal. El litoral incluye las regiones
costeras de océanos y mares, desde la orilla del mar hasta una profundidad de
aproximadamente 180 m. La población animal incluye una gran cantidad de seres
vivos propios de la zona de orilla como corales, mejillones, artrópodos
superiores y peces. La zona pelágica comprende la columna de agua del mar
abierto de idéntica profundidad que la del litoral. Muchas formas pelágicas,
como las medusas y los peces verdaderos equipados con cámaras de aire, están
adaptados para flotar, aunque la mayoría de los habitantes de esta zona son
capaces de nadar. La zona abisal es el fondo oscuro y profundo del océano. Esta
región carece prácticamente de vida vegetal, pero los habitantes abisales, como
los cangrejos, se alimentan de organismos muertos que se hunden desde la
superficie. En este entorno, las comunidades de plantas y animales que viven en
las grietas hidrotermales, donde la cadena alimenticia se basa en bacterias que digieren azufre, son únicas.
Agua Subterránea
Agua que se encuentra bajo la superficie terrestre. Se encuentra en el interior de poros entre partículas sedimentarias y en las fisuras de las rocas más sólidas. En las regiones árticas el agua subterránea puede helarse. En general mantiene una temperatura muy similar al promedio anual en la zona.
Agua que se encuentra bajo la superficie terrestre. Se encuentra en el interior de poros entre partículas sedimentarias y en las fisuras de las rocas más sólidas. En las regiones árticas el agua subterránea puede helarse. En general mantiene una temperatura muy similar al promedio anual en la zona.
El agua subterránea más profunda puede permanecer oculta durante miles o
millones de años. No obstante, la mayor parte de los yacimientos están a poca
profundidad y desempeñan un papel discreto pero constante dentro del ciclo
hidrológico. A nivel global, el agua subterránea representa cerca de un tercio
de un uno por ciento del agua de la Tierra, es decir unas 20 veces más que el
total de las aguas superficiales de todos los continentes e islas.
El agua subterránea es de esencial importancia para la civilización
porque supone la mayor reserva de agua potable en las regiones habitadas por
los seres humanos. El agua subterránea puede aparecer en la superficie en forma
de manantiales, o puede ser extraída mediante pozos. En tiempos de sequía,
puede servir para mantener el flujo de agua superficial, pero incluso cuando no
hay escasez, el agua subterránea es preferible
porque no tiende a estar contaminada por residuos o microorganismos.
La movilidad del agua subterránea depende del tipo de rocas subterráneas
en cada lugar dado. Las capas permeables saturadas capaces de aportar un
suministro útil de agua son conocidas como acuíferos. Suelen estar formadas por
arenas, gravas, calizas o basaltos. Otras capas, como las arcillas, pizarras,
morrenas glaciares y limos tienden a reducir el flujo del agua subterránea. Las
rocas impermeables son llamadas acuífugas, o rocas basamentarias. En zonas
permeables, la capa superficial del área de saturación de agua se llama nivel
freático. Cuando en lugares muy poblados o zonas áridas muy irrigadas se extrae
agua del subsuelo demasiado deprisa, el nivel freático puede descender con gran
rapidez, haciendo que sea imposible acceder a él, aún recurriendo a pozos muy
profundos.
Aunque el agua subterránea está menos contaminada que la superficial,
la contaminación de este recurso también se ha
convertido en una preocupación en los países industrializados.
Agua Pesada
Isótopo de hidrógeno, estable y no radiactivo, con una masa atómica de 2,01363, y de símbolo D o 2H. Se conoce también como hidrógeno pesado, al ser su masa atómica aproximadamente el doble de la del hidrógeno normal, aunque ambos tienen las mismas propiedades químicas. El hidrógeno, tal como se da en la naturaleza, contiene un 0,02% de deuterio. Este isótopo tiene un punto de ebullición de -249,49 °C, 3,28 °C más alto que el del hidrógeno. El agua pesada (óxido de deuterio, D2O) tiene un punto de ebullición de 101,42 °C (en el agua normal es de 100 °C); tiene un punto de congelación de 3,81 °C (en el agua normal es de 0 °C), y a temperatura ambiente su densidad es un 10,79% mayor que la del agua normal.
Isótopo de hidrógeno, estable y no radiactivo, con una masa atómica de 2,01363, y de símbolo D o 2H. Se conoce también como hidrógeno pesado, al ser su masa atómica aproximadamente el doble de la del hidrógeno normal, aunque ambos tienen las mismas propiedades químicas. El hidrógeno, tal como se da en la naturaleza, contiene un 0,02% de deuterio. Este isótopo tiene un punto de ebullición de -249,49 °C, 3,28 °C más alto que el del hidrógeno. El agua pesada (óxido de deuterio, D2O) tiene un punto de ebullición de 101,42 °C (en el agua normal es de 100 °C); tiene un punto de congelación de 3,81 °C (en el agua normal es de 0 °C), y a temperatura ambiente su densidad es un 10,79% mayor que la del agua normal.
El químico estadounidense Harold Clayton Urey, junto con sus
colaboradores, descubrió el deuterio en 1932; consiguió separar el primer
isótopo en estado puro de un elemento. Los métodos más eficaces utilizados para
separar el deuterio del hidrógeno natural son la destilación fraccionada del agua y el proceso
de intercambio catalítico entre agua e hidrógeno. En este último, al combinar
agua e hidrógeno en presencia de un catalizador apropiado, se forma deuterio en
el agua en una cantidad tres veces superior que en el hidrógeno. El deuterio
también se puede concentrar por electrólisis, centrifugación y destilación
fraccionada del hidrógeno líquido.
El núcleo de los átomos de deuterio, llamado deuterón, es muy útil
para la investigación en el campo de la física, ya que
puede ser acelerado fácilmente por ciclotrones y otros aparatos semejantes,
utilizándose como proyectil atómico en la transmutación de elementos. El
deuterio también tiene importantes aplicaciones en la investigación biológica y se usa como isótopo
trazador en el estudio de los problemas del metabolismo.
Durante la II Guerra Mundial, el agua pesada se empleó como agente
moderador en los primeros tipos de reactores nucleares, aunque el grafito ha
ido ocupando su lugar gradualmente. El deuterio, en forma de óxido de deuterio
o de deuteruro de litio, es, junto con el tritio, un componente esencial de
las armas de fusión nuclear, también
llamadas bombas de hidrógeno.
Agua Mineral
Agua de manantial que contiene sales minerales o gases y que, por tanto, puede tener efectos diferentes sobre el cuerpo
humano que el agua corriente. Las aguas minerales se han empleado como remedio desde la más remota antigüedad, y eran familiares para los antiguos griegos y romanos. Acostumbran a clasificarse en alcalinas, salinas, ferruginosas, sulfurosas, aciduladas y arseniosas. Las aguas minerales más notables son las de Vichy, Tehuacán, Apollinaris y Caldas de Malavella, bicarbonatadas; Apenta, Friedrichhall y Ledesma, aguas salinas ricas en sulfatos; Karlovy Vary, Marienbad, Solares y Cestona, ricas en cloruro sódico; Lanjarón, ferruginosa; Aquisgrán, Baden y Aix-les-Bains, sulfurosas; Bath y Baden, arseniosas; y Panticosa, rica en nitrógeno.
Agua de manantial que contiene sales minerales o gases y que, por tanto, puede tener efectos diferentes sobre el cuerpo
humano que el agua corriente. Las aguas minerales se han empleado como remedio desde la más remota antigüedad, y eran familiares para los antiguos griegos y romanos. Acostumbran a clasificarse en alcalinas, salinas, ferruginosas, sulfurosas, aciduladas y arseniosas. Las aguas minerales más notables son las de Vichy, Tehuacán, Apollinaris y Caldas de Malavella, bicarbonatadas; Apenta, Friedrichhall y Ledesma, aguas salinas ricas en sulfatos; Karlovy Vary, Marienbad, Solares y Cestona, ricas en cloruro sódico; Lanjarón, ferruginosa; Aquisgrán, Baden y Aix-les-Bains, sulfurosas; Bath y Baden, arseniosas; y Panticosa, rica en nitrógeno.
·
Biologia I, Estrada, 1995
·
Ciencias Biologicas I, Santillana, 1988
·
Quimica General e Inorganica, Kapuluz, 1995
No hay comentarios.:
Publicar un comentario